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The integral equation perturbation theory of Lado, Maddcn and Fitts(MF) was combined with 
the Optimized Cluster Theory (OCT) of Weeks-Chandler-Aiidersen in calculating the radial 
distribution functions for two oscillatory potentials suggested for liquid sodium and aluminium. 
These calculations properly take into account the softness of the repulsive part of these potentials. 
The results are compared with molecular dynamic simulations, the high temperature(HTA) and 
with Percus-Yevick and Mean spherical model results. 

INTRODUCTION 

Since to  a good approximation liquid metals may be described by hard 
sphere forms, Ashcroft and Lekner' calculated the structure factors of liquid 
metals using the analytic solution of the Percus-Yevick' equation for hard 
spheres as obtained by Wertheim3 and Thiele.4 In these calculations the 
packing fraction (q )  has been chosen as an adjustable parameter and good 
agreement was obtained for the major diffraction peak. Since then there was 
renewed interest in calculating the structure and thermodynamic properties 
of liquid The inter particle potential for liquid metals have long 
range oscillations and rather soft repulsive cores and it is the aim of the present 
study to obtain structural information for such potentials which treats 
properly the softness of the repulsive cores. Recent theoretical results7~* have 
shown that various parts of the interatomic potential have very different 
effects on the structure of a liquid. It was found that at high densities the 
repulsive part of the potential determines the structure factor for wave vectors 
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192 K.  N .  SWAMY A N D  M .  RAM1 R E D D Y  

larger than the location of the first maximum and it determines the location 
but not the height of the first maximum. The long range attractions affect the 
height but not the location and the behaviour ofthe structure factor for smaller 
values of the wave vector. JonesIg has applied the variational theory of 
Mansoori and Canfield” to calculate the equation of state of liquid metals 
using hard sphere diameter as a variational parameter. Umar and Young’ ’ 
calculated the structure factors of liquid metals in the variational theory. 
Kumaravadivel and Evans” obtained the structure of liquid metals from 
Weeks-Chandler-Andersen (WCA) perturbation theory.I3 A method of 
obtaining the structure of liquid metals using Singwi-Tosi-Land-Sjolander 
(STLS) scheme14 has been given by Ailawadia6 Recently, Rami Reddy et a/.” 
presented the results for the radial distribution function for liquid metals 
using the Optimised cluster theory. l 6  Various computer simulation studies 
such as the Monte-Carlo (MC) and Molecular dynamic (MD) methods were 
reported in the literature for liquid metals.’7319 Blum and Narten” applied 
the Mean spherical model” and calculated the radial distribution function 
for liquid aluminium. Recently, Bratkovsky et n1.’’ made a careful analysis of 
theory and the Hyper netted chain (HNC)23 approximation. All the cal- 
culations carried out so far can be divided into three categories: 

i) the computer simulation 
ii) calculations based on the integral equations and 
iii) those based on perturbation theory relative to some hard sphere 

system. 

In the methods based on perturbation theory the structure of the reference 
part of the potential was calculated using zeroth order blip function theory.24 
Defining 

where g ( r )  is the radial distribution function, u(r)  is the interparticle potential 
and P = l / k ,  T where k ,  is the Boltzman constant and T is the temperature 
of the fluid. The zeroth order blip function expansion result in the expression 

where yd( r )  is the y-function for a fluid of hard spheres of diameter d .  The 
density of the hard sphere fluid is equal to the density of the fluid being 
treated. The hard sphere diameter is chosen such that the following equation 
is satisfied : 

JdrB(r)  = 0 (3) 
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STRUCTURE OF LIQUID METALS 193 

The.function B(r) is defined by the relation 

where ud(i“)  is the hard sphere potential given by 

r < d 

= o  r > d  
ud(r) = so 

( 5 )  

The zeroth order blip function theory works well for potentials whose 
repulsive cores approximate a hard sphere potential. But for potentials whose 
repulsive cores are softer than the Lennard Jones r -  core the blip function 
expansion has to be taken to higher order. To carry out the perturbation to 
higher order terms one encounters higher order correlation functions, 
information. about which is too meagre. Various prescriptions were made in 
the To overcome this difficulty LadoZ6 and Madden and Fitts” 
(MF) have formulated perturbation theories in which the integral equation 
approximations were used to obtain the perturbation corrections. In this 
paper we have used the MF integral equation perturbation theory approach 
supplemented with the Percus-Yevick and HNC approximations for calcu- 
lating the structure of the reference part of the potential. To calculate the 
structure of the fluid interacting with the potential u(r) we used the Optimised 
cluster theory. Calculations were performed for the following potentials: 

i) a potential suggested by Schiff” for liquid sodium and is given by 

The repulsive core of this potential is intermediate between the Born-Mayer 
soft core and the Lennard Jones r - 1 2  core. The potential parameters were 
taken from Schiff. 

ii) a potential also suggested by Schiff which has an inverse twelfth power 
repulsive core and is given by 

cos(2kf r )  B G 
r 3  V,(r> = 

INTEGRAL EQUATION PERTURBATION THEORY 

It is well known that in a dense fluid the repulsive forces dominate the 
structure and the effect of the attractive forces is to provide a uniform back- 
ground of the mean field type. In the perturbation theory one divides the 
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194 K .  N. SWAMY A N D  M.  RAM1 REDDY 

potential u(r) into 

u(r)  = uo(r) + Au,(r) (8) 

where uo(r) is the reference part of the potential and ul(r) is the attractive 
perturbation. An important aspect of the perturbation theory is that a 
judicious choice has to be made in the separation of u(r) into uo(r) and uI(r). 
Following WCA we take the division such that 

uo(r)  = u(r)  - u(R,) r < R ,  

= o  r > R ,  
(9) 

ul(r) = u(R,) r < R, 

= u(r)  r > R ,  

Here R ,  is the position of the minimum in the potential. Verlet and Weis'' 
have shown by numerical experiments that WCA separation leads to a 
converging perturbation series for the Helmholtz free energy. A perturbation 
series for g(r )  may be obtained by expanding g ( r )  in a power series in A about 
the reference system 

where go(r )  is the RDF of the reference system and A"g(r) is the nth order 
perturbation correction. Approximating the perturbation corrections 
through integral equations Eq. (1 1) becomes 

A similar expansion of yo(r)  around that of the hard spheres and approximat- 
ing the perturbation corrections through integral equation yields 

Y&) = Y H d r ;  4 + c a"AnYIE(r) (13) 
n 

Madden and Fitts approximated Eq. (13) by writing 

yo(r)  = YH&; 4 + YhE(4 - YE&; 4 (14) 

In the zeroth order blip function theory one retains only the first term on the 
right hand side of Eq. (14). 
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OPTlMlSED CLUSTER THEORY 
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The optimised cluster theory (OCT) has been well discussed in the literature 
and hence we confine ourselves to giving a brief outline of the theory. In 
OCT the Mayer cluster series for the Helmholtz free energy and the pair 
correlation functions are transformed using topological reduction to a 
compact form involving a renormalised potential. Defining 

and its fourier transform by 

&k) = s 4 ( r )  exp[ik - r] dr (16) 

the renormalised potential is given by 

In the above equation the hyper vertex Fo(rl, r z )  is defined by 

FO(J"1, rz> = P W , ,  r 2 )  + p2h0(r,, J " 2 )  

ho(r19 rz) = go(r1, r 2 )  - 1 

(18) 

(19) 

where 

and 6(r)  is the Dirac delta function. The RDF in the OCT is given by 

g ( r )  = exPC- P{uo(r) + u(r))l.v,(r) expCC,(r) - ml (20) 

In the high temperature approximation (HTA) valid at high densities thc 
RDF is approximated by 

gHTA(r) = exPC - Buo(r>lv"s(r; 4 (21) 

INTEGRAL EQUATIONS 

We made use of the Percus-Yevick (PY) and the Hyper netted chain (HNC) 
equations in Eq. (14). In PY theory 

c(r)  = f ( Y ) Y ( V )  (22) 

(23) 

and in the HNC theory 

44 = f ( r ) v ( r )  + Y ( 4  - 1 - In Y(r> 

B 
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196 K .  N .  SWAMY A N D  M. RAM1 REDDY 

where c(r) is the direct correlation function defined in terms of the pair 
correlation function g ( r )  [h(r)  + 11 by the Ornstein-Zernicke relation 

h(r) = c(r)  + p h(r')c(r - r')dr' (24) s 
where p is the number density and the Mayer function is given by 

.m = expC-flu(r)l - 1 (25) 
The mean spherical approximation for molecules with impenetrable 

cores of diameter d is usually written 

Eq. (26) was first derived by Lebowitz and Percus'l as the limit for continuum 
fluids of the mean spherical model for lattice systems. 

For y L i ( r ;  d) we used the analytic representation of the PY solution as 
given by Smith and Henderson" and for yHs(r;  d) we used the Verlet-Weis 
formulation. y;,""(r; d) was obtained by solving the HNC equation for the 
hard sphere potential of diameter d. 

CHOICE OF R 

Two different methods were adopted in the choice of R,. In the first place 
R, was chosen at the minimum of the potential as proposed by WCA. In 
the second case R, was chosen from the following prescription: 

Defining the blip function expansion parameter 5 by 

For inverse power potentials it was found that the approximation given by 
eq(2) is accurate provided 5 N 0.14. Thc second choice for R,  was chosen 
such that 

[(R,) = 0.14 (28) 

(29) 

where ((R,) is given by Eq. (27) with 

B(r)  = Yd(r) iexp[l - b L L R ( y ) l  - exp[-flud(r)l) 
with 

uR(r) = u(r) - u(R,) r < R ,  

= o  r > R,  
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STRUCTURE OF LIQUID METALS 197 

NUMERICAL CALCULATIONS 

The PY and HNC equations were solved in the r-space by transforming the 
integral in Eq. (24) to bipolar coordinates. A step size of 0.050 was used in 
the numerical integrations of these equations. Convergence was enhanced 
by using Broyle's mixing technique. The iterations were truncated when 

(31) Iyyn<r> - y::'(r)l I 0.001 
These results were used in calculating yo(r)  from Eq. (14). In the OCT the 
contributions of the ring diagrams to the free energy is given by 

It is obvious that the properties of the fluid of particles interacting through the 
potential u = uo + u1 must be independent of the value of the perturbation 
u1 for the physically impossible interparticle separations r < d. This un- 
physical behaviour was eliminated by choosing u1 in such a way that 

C,(r) = 0, r < d 
This implies that 

(33) 

The solution u1 to the above equation was found in the following manner. 
For Y < d ,  uo(r) was expanded as 

n 

uo(r) = C am(r - d)"- (35) 
m =  1 

where y1 is a positive integer. The vector (ao, a,, . . . , a,) which is the solution 
of the set of equations which follows was found : 

= o  (36) a Varin g 

d a m  

The set of equations were solved by using Newton-Raphson method. All 
the integrals were evaluated using Simpson's rule and the fourier transforms 
were evaluated using Filon's method. The function yHs(r ;  d )  inside the core 
was obtained from the equation 

Equation (37) is an interpolation formula. The coefficients A ,  B,  C and D 
were determined as suggested by Grundke and Henderson3'. 
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RESULTS 
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The results of the calculations based on the present method for the RDF for 
liquid sodium and aluminium for the potentials V,(r)  and V,(r) are presented 
in Figures 1-8. The molecular dynamic calculations for V,(r) at T* = 0.97 and 
p = 0.83 were reported by Paskin and Rahman3* and for aluminium MD 
calculations were performed by Schiff at T* = 0.78 and p = 0.89. In Figures 
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FIGURE I Present theory 
using PY-IEPTwith R,chosensuch that [ = 0.14. 0 0 0 MD, W W W HTA,----Neutron 
diffraction experiments. 

4ar2pg(r)forliquid sodium for V,(r)at T* = 0.97, p = 
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14.0 - 
L - 
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J * *  

2.0 4.0 6.0 8.0 10.0 

r 
FIGURE 2 Same as Figure 1 but using HNC-IEPT. 
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FIGURE 3 Same as Figure 2 but R, was chosen using WCA criterion. 

5.0 4.0 i 
3.0 
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L 

171 
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2 .o 

I .o 

1.0 2 .o 3.0 + 
FIGURE 4 
theory using PY-IEPT with R ,  chosen such that 4 = 0.14. For other symbols see Figure 1. 

R D F  for liquid aluminium for V,(r )  at T* = 0.78, p = 0.89. -- -- ~~ Present 

1 and 2 the RDF for V, ( r )  calculated from the present theory with PY and 
HNC integral equation perturbation theory with R, chosen from Eq. (28) 
was compared with the M D  calculations, the high temperature approxima- 
tion and with diffraction experiments. In Figure 3 the HNC IEPT results when 
R, is chosen from the WCA criterion was compared with other results. In 
Figures 4-6 similar comparison was made for the RDF of liquid aluminium. 
In Figures 7 and 8 R D F  of liquid sodium and aluminium obtained from the 
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5.0 I 
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1.0 2 .o 3.0 

:'" 
FIGURE 5 Same as Figure 4 but for HNC-IEPT. 

4.0 5'0 ~ 

1.0 2.0 3.0 

r/(J- 
FIGURE 6 Same as Figurc 5 but Tor R, chosen using WCA criterion. 

P Y  and HNC integral equations were compared with the simulation results. 
These comparisons clearly indicate that when the structure of the reference 
part of the potential was well represented (beyond the zeroth order blip 
function theory) then OCT provides a good representation of the structure 
of liquid metals. 

A comparison of Figures 1 and 2 and Figures 4 and 5 shows that for soft 
core fluids the HNC approximation is superior than the PY approximation. 
Further, provided the structure of the soft core fluid is represented properly 
the two different choices of R ,  give quantitatively the same result. 
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FIGURE 7 
MSM, 0 MD. 

4nr2pg(r)  for liquid sodium for V,(r )  at T* = 0.97, p = 0.83. ~ PY, - - - ~  

I .o 2 .o 3.0 4.0 

h- 
FIGURE 8 
symbols. 

RDF for liquid aluminium for V s ( r )  at T* = 0.78, p = 0.89. See Figure 7 for 

CONCLUSIONS 

We presented a method for calculating the reference part of the potential for 
liquid metals based on the integral equation perturbation theory supple- 
mented with the PY and HNC approximations which takes in a rough way 
the higher contributions in the blip function expansion. These calculations 
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provide an accurate representation for the reference part of the potential for 
liquid metals. Further it was shown that when the reference part of the 
potential was well represented then OCT will provide a good representation 
of the structure of the liquid metal. A similar conclusion was made for other 
liquid metals by Swamy and R e d d ~ . ~ '  
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